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Abstract

A method for estimating parameters in dynamic stochastic (Markov Chain) models based on
Kurtz’s limit theory coupled with inverse problem methods developed for deterministic dynam-
ical systems is proposed and illustrated in the context of disease dynamics. This methodology
relies on finding an approximate large-population behavior of an appropriate scaled stochastic
system. This approach leads to a deterministic approximation obtained as solutions of rate
equations (ordinary differential equations) in terms of the large sample size average over sample
paths or trajectories (limits of pure jump Markov processes). Using the resulting deterministic
model we select parameter subset combinations that can be estimated using an ordinary-least-
squares (OLS) or generalized-least-squares (GLS) inverse problem formulation with a given data
set. The selection is based on two criteria of the sensitivity matrix: the degree of sensitivity
measure in the form of its condition number and the degree of uncertainty measured in the
form of its parameter selection score. We illustrate the ideas with a stochastic model for the
transmission of vancomycin-resistant enterococcus (VRE) in hospitals and VRE surveillance
data from an oncology unit.
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selection, large population sample path approximations.
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1 Introduction

Closely tied to the formulation of the mathematical models is the need to estimate the parameters
(including initial conditions) involved as well as provide uncertainty bounds for the estimates.
Validating the mathematical models with empirical data for the system under investigation is a
key step in gaining insight into the system process and evaluating the effectiveness of particular
control strategies [8, 10, 11, 12, 21, 24]. A number of advanced mathematical and statistical
tools for parameter estimation in deterministic dynamic models are readily available. The key
objective of this paper is to present a methodology to estimate parameters in a stochastic model
using inverse problem methods developed for deterministic dynamical systems. In these inverse
problem methods, parameter estimates along with uncertainty bounds (confidence intervals) are
readily obtained from longitudinal data for a single realization of the observation process for the
stochastic system. Moreover, sensitivity analysis along with parameter selection (determining which
parameters are most “identifiable” with the given data) can be done without massive simulation
studies.

It is difficult to carry out the above estimation related tasks directly with stochastic models
and limited data. The methodology presented in this paper is based on using an approximate
large-population behavior of an appropriate scaled stochastic system using Kurtz’s limit theory
[19, 22]. By scaling the stochastic system and applying the Strong Law of Large Numbers (SLLN)
for the relevant Poisson process, we can derive the corresponding deterministic approximation
as solutions of rate equations in terms of the large sample size average over sample paths or
trajectories. Using the resulting deterministic model we select parameter subset combinations that
can be estimated using an ordinary-least-squares (OLS) or generalized-least-squares (GLS) inverse
problem formulation with a given data set along with an appropriate statistical model for the
observation process.

Given an experimental data set, a mathematical model may be more sensitive to some param-
eters than others, and the dependence between the parameters can impact the well-posedness of
an inverse problem. Therefore, it is of interest to limit the attempted estimation to subsets of
parameters for which the mathematical model is most sensitive. The analysis used to select the
type of inverse problem formulation and the subset of parameters to be estimated from a given
data set is based on previous ideas in the literature [6, 14, 17], and is reviewed in Section 4. The
selection procedure is based on two criteria of the sensitivity matrix: the degree of sensitivity
measure in the form of its condition number and the degree of uncertainty measured in the form
of its parameter selection score. The idea is to select first all parameter combinations with a full
rank sensitivity matrix and then calculate the corresponding Fisher matrix condition numbers and
selection scores. Then parameter subset combinations with small condition numbers and selection
scores are considered as feasible (i.e., can be estimated with reasonable levels of uncertainty).

The motivation for this manuscript derives from our interest in understanding the spread
of infectious diseases in particular, nosocomial infections, in order to prevent major outbreaks
in hospital settings. Thus in Section 2 we introduce a stochastic model of the transmission of
Vancomycin-Resistant Enterococcus (VRE) in hospitals that is used to illustrate the methodology
introduced in this paper. This model was developed in our initial studies of VRE (see [25] as well as
[2, 3, 4, 7, 10, 15, 16, 23, 24, 28, 29]). In Section 2.2 we show in detail how to obtain the correspond-
ing deterministic approximation using Kurtz’s theory. We follow in Section 3 with a description of
the surveillance data motivating our efforts and the parameters that can be estimated directly from
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the data. In Section 4 we review the inverse problem and parameter selection methodology used
to estimate parameters and quantify uncertainty for problems with deterministic systems. Finally,
in Sections 5 and 6 we present some illustrative results and along with some summary conclusions.

2 A Motivating VRE Stochastic Model

For our motivating example model, patients in a hospital unit are classified by compartments
or states as either uncolonized U(t), VRE colonized C(t), or VRE colonized in isolation J(t), as
depicted in the compartmental schematic of Figure 1. A description of the variables and parameters
are given in Table 1. Patients are admitted to the hospital unit at a rate Λ per day and some
fraction m are already VRE colonized. The transition from one compartment to another follows
an exponential distribution and the expected mean duration within a compartment is given by the
inverse of the parameter of the exponential distribution. A hand-hygiene policy applied to health
care workers on isolated VRE colonized patients reduces infectivity by a factor of ° (0 < ° <
1). It is assumed VRE colonization periods last from weeks to months and because spontaneous
decolonization occurs infrequently, clearance of the bacteria is not considered in the model. VRE
colonized patients are moved into isolation at a rate ®.

Figure 1: Compartmental VRE model

2.1 The VRE stochastic model

The dynamics of the VRE colonization of patients in a hospital unit are modeled as a continu-
ous time Markov Chain (MC) with discrete state space [1, 5, 26] embedded in ℝ3. In this case,
the population of patients is considered discrete (i.e., VRE colonization occurs in units of whole
individuals) and the timing of events is a probabilistic process. The state of the MC at time t is
denoted by {U(t) = i, C(t) = j, J(t) = k}, t ≥ 0 and i, j, k ∈ {0, 1, ...N}. The probability that
during a small time interval, dt, of transiting from one state to another is described by

P{U(t+ dt) = i− 1, C(t+ dt) = j + 1, J(t+ dt) = k∣U(t) = i, C(t) = j, J(t) = k}
= m¹1Udt+ ¯U [C + (1− °)J ]dt+ o(dt), (1)
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Table 1: Model Parameters

Variables Description Units

U(t) Number of uncolonized patients Individuals
C(t) Number of VRE colonized patients Individuals
J(t) Number of VRE colonized patients in isolation Individuals

Parameters Description Units

Λ Patients admission rate Individuals/day

m VRE colonized patients on admission rate Dimensionless

¯ Effective contact rate 1/day

° HCW hand hygiene compliance rate Dimensionless

® Patient Isolation rate 1/day

¹1 Uncolonized patients discharged rate 1/day

¹2 VRE colonized patients discharged rate 1/day

P{U(t+ dt) = i, C(t+ dt) = j + 1, J(t+ dt) = k − 1∣U(t) = i, C(t) = j, J(t) = k}
= m¹2Jdt+ o(dt), (2)

P{U(t+ dt) = i+ 1, C(t+ dt) = j − 1, J(t+ dt) = k∣U(t) = i, C(t) = j, J(t) = k}
= (1−m)¹2Cdt+ o(dt), (3)

P{U(t+ dt) = i+ 1, C(t+ dt) = j, J(t+ dt) = k − 1∣U(t) = i, C(t) = j, J(t) = k}
= (1−m)¹2Jdt+ o(dt), (4)

P{U(t+ dt) = i, C(t+ dt) = j − 1, J(t+ dt) = k + 1∣U(t) = i, C(t) = j, J(t) = k}
= ®Cdt+ o(dt), (5)

P{U(t+ dt) = i, C(t+ dt) = j, J(t+ dt) = k∣U(t) = i, C(t) = j, J(t) = k}
= (1−m)¹1Udt+m¹2Cdt+ [1− (Λ + ¯U [C + (1− °)J ] + ®C)]dt+ o(dt). (6)

In the VRE epidemic model a constant population is assumed in which the hospital remains full
for all t (i.e., overall admission rate equals overall discharge rate, Λ = ¹1U + ¹2(C + J)). Hence,
the admission of a patient in either compartments U or C are dependent events on the discharged
in either compartment U or C or J (or vice versa). We assume that when a patient is discharged
from the hospital, he/she is immediately replaced by an admission into the compartment U with
probability (1−m) or into the compartment C with probability m. Equation (1) is the probability
of entering compartment C by either an admission (due to a discharge in compartment U) or by
effective colonization. Equation (2) is the probability of entering compartment C by an admission
due to a discharge in J . Equation (3) is the probability of admission to compartment U by a
discharge in C. Equation (4) is the probability of admission into compartment U by a discharge
in J . Equation (5) is the probability of moving a VRE colonized patient into isolation. Finally,
Equation (6) is the probability that none of the states changes due to: an uncolonized patient
being discharged and replaced back into the U compartment, or a VRE colonized patient in C
being discharged and replaced back into the C compartment, or no event occurs.
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Table 2: Transition rates

Event Effect Transition rate

Discharge of uncolonized patient (U,C,J)=(i-1,j,k) ¸1 = ¹1U
Discharge of VRE colonized patient (U,C,J)=(i,j-1,k) ¸2 = ¹2C
Discharge of VRE colonized patient
in isolation (U,C,J)=(i,j,k-1) ¸3 = ¹2J
Patient colonization due to VRE
colonized patients (U,C,J)=(i-1,j+1,k) ¸4 = ¯UC
Patient colonization due to VRE
colonized patients in isolation (U,C,J)=(i-1,j+1,k) ¸5 = ¯(1− °)UJ
Isolation of VRE colonized patient (U,C,J)=(i,j-1,k+1)) ¸6 = ®C

Admission of uncolonized patient U=i+1 (1−m)(¸1 + ¸2 + ¸3)
Admission of VRE colonized patient C=j+1 m(¸1 + ¸2 + ¸3)

2.2 The deterministic approximation

When dividing equations (1)-(6) by dt and taking the limit when dt tends to 0+, we obtain the
rates of transitions as summarized in Table 2. In the stochastic model, the rates represent the mean
number of transitions that can be expected in a given period, with the actual numbers distributed
about these means. Hence, the rates determine the frequencies of occurrence through time for the
transitions or events.

Letting Ri(t) for i = 1, ..., 6, be the number of times the itℎ transition has occurred by time t.
Then, the state of the system at time t can be written as

U(t) = U(0)−R1(t)−R4(t)−R5(t) + (1−m)(R1(t) +R2(t) +R3(t))

C(t) = C(0)−R2(t) +R4(t) +R5(t)−R6(t) +m(R1(t) +R2(t) +R3(t))

J(t) = J(0)−R3(t) +R6(t), (7)

where Ri(t) is a counting process with intensity ¸i(U(t), C(t), J(t)) given by

Ri(t) = Yi

(∫ t

0
¸i(U(s), C(s), J(s))ds

)
, i = 1, ..., 6, (8)

with Yi as independent unit Poisson processes. Note that the state of the system is (U(s), C(s), J(s))
and hence each ¸i(U(s), C(s), J(s)) is constant between transition times. Also, note that sample
paths ri(t) of Ri(t) are given in terms of sample paths (u(t), c(t), j(t)) of (U(t), C(t), J(t)) by

ri(t) = Yi

(∫ t

0
¸i(u(s), c(s), j(s))ds

)
, i = 1, ..., 6. (9)

Let UN (t) = U(t)/N , CN (t) = C(t)/N , JN (t) = J(t)/N be the patient units per system size or
the proportion in the stochastic process. The corresponding sample paths are (uN (t), cN (t), jN (t)).
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We express the rates ¸i for i = 1, ..., 6 in terms of these scaled variables as follows:

¸1 = ¹1u(t) = N¹1u
N (t), ¸4 = ¯u(t)c(t) = N2¯uN (t)cN (t),

¸2 = ¹2c(t) = N¹2c
N (t), ¸5 = ¯(1− °)u(t)j(t) = N2¯(1− °)uN (t)jN (t),

¸3 = ¹2j(t) = N¹2j
N (t), ¸6 = ®c(t) = N®cN (t).

Using these rates we can obtain an approximation for rNi (t), the averages of the ri(t) of (9) by apply-
ing the SLLN for the Poisson Process (i.e., Y (N¹)/N ≈ ¹). The process results in approximating
for large N , the sample paths (uN (t), cN (t), jN (t)) by a large sample size average approximation
over paths (ū(t), c̄(t), j̄(t)) defined by a deterministic system. That is, we approximate integrals
in the averaged sample path equations by integrals that are used as the defining equations for the
deterministic sample paths. This is done by the approximations

rN1 (t) =
r1(t)

N
=

1

N
Y1

(∫ t

0
¸1(u(s))ds

)

=
1

N
Y1

(
N

∫ t

0
¹1u

N (s)ds

)
≈ 1

N
Y1

(
N

∫ t

0
¹1ū(s)ds

)

≈
∫ t

0
¹1ū(s)ds. (10)

The approximations for rNi (t) for i = 2, ..., 6, can be obtained similarly. When dividing both sides
of the sample path analogue of each equation in (7) by N and applying the approximations for
rNi (t), we can write the system of integral equations (i.e., rate equations) that approximate the
stochastic equations (7) via the SLLN. The rate approximation equations are given by

uN (t) = uN (0)− rN1 (t)− rN4 (t)− rN5 (t) + (1−m)(rN1 (t) + rN2 (t) + rN3 (t))

≈ ū(0)−
∫ t

0
¹1ū(s)ds−

∫ t

0
N¯ū(s)c̄(s)ds−

∫ t

0
N¯(1− °)ū(s)c̄(s)ds

+

∫ t

0
(1−m)(¹1ū(s) + ¹2(c̄(s) + j̄(s)))ds

cN (t) = cN (0)− rN2 (t) + rN4 (t) + rN5 (t)− rN6 (t) +m(rN1 (t) + rN2 (t) + rN3 (t))

≈ c̄(0)−
∫ t

0
¹2c̄(s)ds+

∫ t

0
N¯ū(s)c̄(s)ds+

∫ t

0
N¯(1− °)ū(s)j̄(s)ds

−
∫ t

0
®c̄(s)ds+

∫ t

0
m(¹1ū(s) + ¹2(c̄(s) + j̄(s)))ds

jN (t) = jN (0)− rN3 (t) + rN6 (t)

≈ j̄(0)−
∫ t

0
¹2j̄(s)ds+

∫ t

0
®c̄(s)ds. (11)

Upon approximating (uN (t), cN (t), jN (t)) in the left side by (ū(t), c̄(t), j̄(t)) and differentiating
the above equations we obtain the defining deterministic ordinary differential equations for (ū, c̄, j̄)
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given by

dū(t)

dt
= −¹1ū(t)− ¯Nū(t)c̄(t)− ¯N(1− °)ū(t)j̄(t) + (1−m)(¹1ū(t) + ¹2(c̄(t) + j̄(t)))

dc̄(t)

dt
= −¹2c̄(t) + ¯Nū(t)c̄(t) + ¯N(1− °)ū(t)j̄(t)− ®c̄(t) +m(¹1ū(t) + ¹2(c̄(t) + j̄(t)))

dj̄(t)

dt
= −¹2j̄(t) + ®c̄(t), (12)

with initial conditions ū(0) = U0/N , c̄(0) = C0/N , and j̄(0) = J0/N .
To facilitate comparison with the MC model, we let Ū(t) = Nū(t), C̄(t) = Nc̄(t), and J̄(t) =

Nj̄(t). Then, the system of ordinary differential equations which provides an approximation to
averages over sample paths of (U((t), C(t), J(t)) is described by

dŪ(t)

dt
= (1−m)[¹1Ū(t) + ¹2(C̄(t) + J̄(t))]− ¯Ū(t)[C̄(t) + (1− °)J̄(t)]− ¹1Ū(t)

dC̄(t)

dt
= m[¹1Ū(t) + ¹2(C̄(t) + J̄(t))] + ¯Ū(t)[C̄(t) + (1− °)J̄(t)]− (®+ ¹2)C̄(t)

dJ̄(t)

dt
= ®C̄(t)− ¹2J̄(t), (13)

with initial conditions Ū(0) = U0, C̄(0) = C0, and J̄(0) = J0.

2.3 Simulation results

We carried out simulations to compare the results of the stochastic and deterministic models.
The deterministic system was numerically solved using ode45 in Matlab. Both deterministic and
stochastic results are generated using the same parameter values and initial conditions. We used
a stochastic simulation algorithm proposed by Gillespie [20] that is standard for discrete state
continuous time MC models. The algorithm is the following:

1. Initialize the state of the system;

2. For a given state of the system calculate the transition rates, ¸i, for i =1,...,n, where n is the
total types of transitions;

3. Calculate the sum of all transition rates ¸ =
∑n

i=1 ¸i;

4. Monte Carlo Step: Simulate the time until the next transition, ¿ , by drawing from an
exponential distribution with mean 1/¸;

5. Monte Carlo Step: Simulate the transition type by drawing from the discrete distribution
with P (transition = i) = ¸i/¸. Generate an uniformly distributed random number r2. For
0 < r2 < ¸1/¸ transition 1 is chosen, for ¸1/¸ < r2 < (¸1 + ¸2)/¸ transition 2 is chosen, and
so on;

6. Update the new time t = t+ ¿ and the new system state;

7. Iterate steps 2-6 until t ≥ tstop.
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Stoch 1
Stoch 2
Stoch 3
Stoch 4
Stoch 5
Deterministic

Figure 2: Sample of 5 stochastic realizations in comparison to the numerical solution of the deter-
ministic model; N = 37 patients, tstop = 500.

Figure 2 depicts a simulation of the stochastic model for a sample of 5 stochastic realizations
(N = 37, tstop = 500) plotted in comparison to the deterministic numerical solution for the three
compartments. Note that the stochastic realizations exhibit very large differences. However, when
carrying out the simulations for larger values of N, the variation between the stochastic realizations
decreases as the value of N increases and are closer to the numerical solution of the deterministic
model, as seen in Figure 3. To quantitatively analyze how the variability of the stochastic real-
izations decreases as N increases, we calculated the coefficient of variation (CV) in the range t =
[300, 400] using 100 stochastic realizations. These are given in the caption for Figure 3.

3 VRE Surveillance Data

The motivating surveillance data is from an oncology unit, obtained from the VRE Infection Control
database of the Department of Quality Improvement Support Service of Yale-New Haven Hospital.
Data reports on the number of VRE cases occurred on admission (including patients transferred),
the patients’ length of stay, the daily number of patients in isolation due to VRE colonization,
the compliance of swab culture administered on admission, and the health care worker contacts
precautions compliance. Data collection occurred during the period of January 2005 to January
2007 with a mean number of in-patients per day of 31 patients (with a total of 37 beds).

Ward protocol required rectal swabbing all patients on admission, and once a week (every
Tuesday) for VRE surveillance. Compliance was not 100%, as the mean percentage of swab cultures
taken on admitted patients per day was 77%. Swab-test results were usually returned 48 hours
after admission. If a patient tested VRE positive, he/she was isolated. The isolation procedure
consisted of contact precautions by the use of gowns, gloves, and the location of a patient in a
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Figure 3: Sample of 5 stochastic realizations for each compartment in comparison to the numerical
solution of the deterministic model for N = 137, 537, 937, 2037, tstop = 500. The coefficient of
variation (CV) for [U , C, J ] in the range t = [300, 400] using a sample of 100 stochastic realizations
is: (a)[0.064,0.060,0.027], (b)[0.036,0.027,0.008], (c)[0.031,0.021,0.006], (d)[0.029,0.014,0.004]
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Table 3: Parameters and initial conditions values (some values are assumed for optimization pur-
poses)

Initial Conditions Oncology Unit (N=37) Source

U(0) 29 Assumed
C(0) 4 Assumed
J(0) 4 data

Parameters

Λ ¹1U(t) + ¹2(C(t) + J(t)) -
m 0.04 Assumed
¯ 0.001 Assumed
° 0.58 data
® 0.29 data
¹1 0.16 data
¹2 0.08 data

single room or in a room with another patient who was also VRE positive. If a readmission patient
had a positive VRE culture in the past, he/she did not get the rectal swab on admission but was
isolated immediately. The isolation report was performed on weekdays (no weekends or holidays).
The mean number of isolated VRE colonized patients per day was 9.39 (std=2.90) patients.

3.1 Parameters estimated directly form the surveillance data

Infection control measures were implemented in the form of health care worker hand-hygiene before
and after patients contact by the use of gloves and gowns, and washing the hands. For the4 present
consideration we are consider the health care worker before patient contact compliance of 57.56%
as a better estimator for the parameter °. In the oncology unit VRE colonized patients had a
mean length of stay of 13.15 days (std=18.28) compared with 6.27 (std=6.80) for the uncolonized
patients. These means are statistically significantly different supporting the assumption of different
discharge rates. Hence, we take 1/¹1 = 6.27 and 1/¹2 = 13.15 giving ¹1 = 0.16 and ¹2 = 0.08.

In an attempt to estimate the fraction m of patients that are colonized on admission, we found
inconsistencies in the reported prevalence of VRE on admission (the summaries of admitted patients
did not match the actual data). In estimating the initial conditions (U0, C0, J0) from the data
reported on the first day of data collection (January 3, 2005), only the number of VRE colonized
patients in isolation were reported. Hence, the initial conditions for U0 and C0 classes cannot be
easily estimated. Another parameter that is of interest and can not be estimated directly from the
data is the VRE transmission rate ¯. As a result, the fraction of patients that are colonized on
admission, the initial conditions, and the transmission rate will be estimated using inverse problem
methodology. In Table 3 we present the estimated and assumed values of the parameters and initial
conditions taken as nominal values in inverse problem calculations.
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4 Inverse Problem Methodology

We outline briefly the statistical methodology for estimating parameters in dynamical systems such
as (13) using observations of some of the states. More details can be found in [6, 17].

Let Yj for j = 1, ..., n, be longitudinal data observations (which are random variables) corre-
sponding to the experimental data for the observation process. Since in general Yj is not assumed
to be free of error (i.e., error in the data collection process), Yj will not be exactly f(tj , µ0), the
observed part of the true trajectory at time tj . The statistical model that captures the variability
is assumed given by

Yj = f(tj , µ0) + ℰj for j = 1, .., n, (14)

in the case of absolute error in the measurements. We can thus envision experimental data as
generally consisting of observations from a “perfect” model plus an error component, where µ0
corresponds to the “true” parameter that generates the observations Yj for j = 1, ..., n. We assume
that the ℰj ’s are generated from a generally unknown probability distribution P . They are assumed
to satisfy the error assumptions

(EA) The random variables ℰj , j = 1...., n, are independent identically distributed with mean
zero (i.e., E(ℰj) = 0) and constant finite variance (i.e., var(ℰj) = ¾2

0 < ∞).
The observational process corresponding to the mathematical model (13) is denoted by

f(tj , µ0) = J(tj , µ0). (15)

where the observation function f(tj , µ) depends on the parameters µ in a nonlinear fashion.

4.1 Ordinary least squares (OLS) estimation

If the error distribution is unknown, an OLS optimization procedure is often employed. This method
can be viewed as minimizing the distance between the data and the model where all observations
are treated as of equal importance. The OLS method defines “best” as when the norm square of
the residuals is a minimum

µOLS = µnOLS = arg minµ∈Θ
n∑

j=1

[Yj − f(tj , µ)]
2. (16)

This corresponds to solving for µ in

n∑

j=1

[Yj − f(tj , µ)]∇f(tj , µ) = 0.

We do not know the distribution of the random variable µOLS , but under asymptotic theory [6, 17,
27] we have as n → ∞ the approximation

µOLS = µnOLS ∼ Np(µ0,Σ
n
0 ), (17)
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where the covariance matrix Σn
0 is defined by

Σn
0 ≡ ¾2

0[nΩ0]
−1

with

Ω0 ≡ limn→∞
1

n
Ân(µ0)

TÂn(µ0).

Here Ân(µ) = {Âjk} is the sensitivity matrix given by

Âjk(µ) =
∂f(tj , µ)

∂µk
j = 1, ..., n and k = 1, ..., p.

The error variance ¾2
0 is approximated by

¾̂2
OLS =

1

n− p

n∑

j=1

[yj − f(tj , µ̂OLS)]
2 (18)

as the bias adjusted estimate for ¾2
0, where µ̂OLS is the realization of µOLS for a given realization

{yj} of {Yj}. The covariance matrix Σn
0 is approximated by

Σ̂n
OLS = ¾̂2

OLS [Â
T (µ̂OLS)Â(µ̂OLS)]

−1. (19)

Therefore in practice one uses the approximation

µOLS ∼ Np(µ0,Σ
n
0 ) ≈ Np(µ̂OLS , Σ̂

n
OLS). (20)

Asymptotic standard errors for the parameter estimates are obtained by taking square roots of

the diagonal elements of Σ̂n
OLS , i.e., SE(µ̂k) =

√
(Σ̂n

OLS)kk, k = 1, ..., p. The sensitivity matrix
can be calculated by solving the sensitivity equations

d

dt

∂x

∂µ
=

∂g

∂x

∂x

∂µ
+

∂g

∂µ
, (21)

where in our example (13), written as ẋ = g(x(t), µ), ∂g/∂x is a 3 × 3 matrix function and both
∂x/∂µ and ∂g/∂µ are 3× p matrix functions.

4.2 Generalized least squares (GLS) estimation

If the error distribution is unknown and we suspect that relative error is present in the measurement,
then the assumption of constant variance of the error in the longitudinal data does not hold. In
such cases, a generalized least square (GLS) optimization procedure should be employed. For this
case we need to formulate a new statistical model to take into consideration the non-constant error
variability. If we can assume that the size of the error depends linearly on the size of the observed
quantity, the statistical model (i.e, relative error model) is given by

Yj = f(tj , µ0)(1 + ℰj) for j = 1, .., n, (22)
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where the ℰj satisfy (EA). It follows that Yj ∼ N (f(tj , µ0), ¾
2
0f

2(tj , µ0)). In this case, GLS can
be viewed as minimizing the distance between the data and the model while taking into account
a model dependency variance in the observations. The GLS method defines “best” estimator as
µGLS obtained from solving

n∑

j=1

f−2(tj , µGLS)[Yj − f(tj , µGLS)]∇f(tj , µGLS) = 0, (23)

with the corresponding estimate µ̂GLS for a given realization {yj}. From asymptotic theory [6, 17]
we find

µGLS = µnGLS ∼ Np(µ0,Σ
n
0 ) (24)

where
Σn
0 ≈ ¾2

0[Â
T (µ0)W (µ0)Â(µ0)]

−1

with

Â(µ) =

⎡
⎢⎢⎣

∂f(t1,µ)
∂µ1

⋅ ⋅ ⋅ ∂f(t1,µ)
∂µp

...
...

∂f(tn,µ)
∂µ1

⋅ ⋅ ⋅ ∂f(tn,µ)
∂µp

⎤
⎥⎥⎦

and W−1(µ) = diag(f2(t1, µ), ..., (f
2(tn, µ)). Using the estimates we have the covariance matrix

approximation
Σn
0 ≈ Σ̂n

GLS = ¾̂2
GLS [Â

T (µ̂GLS)W (µ̂GLS)Â(µ̂GLS)]
−1 (25)

and the error variance approximation

¾̂2
GLS =

1

n− p

n∑

j=1

1

f2(tj , µ̂GLS)
[yj − f(tj , µ̂GLS)]

2. (26)

Therefore in practice we use the approximation

µGLS ∼ Np(µ0,Σ
n
0 ) ≈ Np(µ̂GLS , Σ̂

n
GLS). (27)

We can also calculate the asymptotic standard errors for µ̂GLS by taking the square roots of the
diagonal elements of the covariance matrix Σ̂n

GLS . Again the sensitivity matrix Â(µ̂GLS) = {Âjk}
can be calculated using the sensitivity equations in (21).

Typically, one does not attempt to solve (23) directly, but rather the estimate µ̂GLS for a given
realization {yj} can be solved for iteratively using the algorithm:

1. Set k = 0. Estimate the initial µ̂
(k)
GLS by using the OLS estimate with yj in place of Yj in (16);

2. Form the weights ŵk
j = f−2(tj , µ̂

(k)
GLS);

3. Find µ̂
(k+1)
GLS by minimizing

Jk(µGLS) =
n∑

j=1

ŵk
j ∣yj − f(tj , µGLS)∣2; (28)
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4. Set k = k+1 and return to 2. Terminate the process when two successive estimates for µ̂GLS

are“close” to one another.

4.3 Subset selection algorithm

It is typical that in systems such as (13) some of the parameters (components of µ) are more
readily estimated than others. The ability to reliably estimate a parameter is directly related to the
sensitivity of the model output to a parameter. In order to identify the subset of parameters that has
a high sensitivity to the mathematical model, we use the identifiability analysis recently developed
in [14]. The parameter selection or parameter identifiability algorithm consists of considering two
criteria:

1. Select the combinations of parameter vectors that have a full rank sensitivity matrix Ân(µ̂).
The degree of sensitivity for the matrix is measured in the form of its condition number
·(Ân(µ̂)) defined below in (36);

2. For each parameter vector selected in the first criteria, estimate its degree of uncertainty. Its
degree of uncertainty is measured in the form of the parameter selection score À(µ̂) defined
by (37).

The motivation behind the first criterion is as follows. If µ0 is the true parameter, then Δµ =
µ − µ0 denotes a local perturbation from µ0. This gives rise to a local perturbation Δy(t) =
y(t, µ) − y(t, µ0) in the output model. Then by a first order Taylor approximation we obtain the
approximate relationship

Δy ≈ ÂΔµ. (29)

A parameter vector is identifiable (locally) if the above equation can be solved uniquely for Δµ.
This is the case if rank(Â) = p, or equivalently, if and only if the Fisher information matrix,
F = ÂT (µ̂)Â(µ̂) is nonsingular or

det(ÂTÂ) ∕= 0. (30)

The Fisher information matrix measures the amount of information that an observation process
carries about an unknown parameter µ. If near-singularity of F is present then the approximation of
the covariance matrix and consequently the calculation of standard errors and confidence intervals
for the corresponding estimated parameters are affected.

If one focuses on properties of the sensitivity matrix Â(µ) rather than the Fisher information
matrix, a singular value decomposition (SVD) of the sensitivity matrix plays a crucial role in
uncertainty quantification. The SVD of the sensitivity matrix is denoted by

Â(µ) = U

[
Λ
0

]
V T (31)

where U = [U1 U2] and V are n × n and p × p orthogonal matrixes, with U1 containing the first
p columns of U and U2 containing the last n− p columns. Λ is a p× p diagonal matrix defined as
Λ = diag(s1, ..., sp) with s1 ≥ s2 ≥ ... ≥ sp ≥ 0, and 0 denotes an (n− p)× p matrix of zeros.

Suppose that f(t, µ) is well approximated for all t = tj by its linear Taylor expansion around µ0
as

f(t, µ) ≈ f(t, µ0) +
∂f

∂µ
(t, µ0)(µ − µ0). (32)
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Then letting f(µ) = (f(t1, µ), ..., f(tn, µ))
T , Y = (Y1, ..., Yn)

T and ℰ = (ℰ1, ..., ℰn)T , we have from
(14)

Y − f(µ) = −Â(µ0)(µ − µ0) + ℰ . (33)

We can then define the estimator µOLS that minimizes ∣Y −f(µ)∣2 and using the invariance property
of the Euclidean norm (i.e., ∣w∣2 = wTw = wT Iw = wTUUTw = ∣UTw∣2) we have that

∣Y − f(µ)∣2 = ∣ − Â(µ0)(µ − µ0) + ℰ∣2

=

∣∣∣∣UT

(
−U

[
Λ
0

]
V T (µ − µ0) + ℰ

)∣∣∣∣
2

=

∣∣∣∣−
[
Λ
0

]
V T (µ − µ0) +

[
UT
1

UT
2

]
ℰ
∣∣∣∣
2

. (34)

Solving ∣ − ΛV T (µ − µ0) + UT
1 ℰ∣2 = 0 for µ we have

µ − µ0 = (ΛV T )−1UT
1 ℰ .

This implies

µ̂OLS = µ0 + V Λ−1UT
1 ℰ

= µ0 +

p∑

i=1

1

si
viu

T
i ℰ . (35)

Note that if si → 0, the estimator is particular sensitive to ℰ .
If Â(µ) ∈ ℝn×p is a full rank sensitivity matrix (i.e., rank(Â(µ)) = p) its condition number · is

defined as the ratio of the largest to smallest singular value given by

·(Â(µ)) =
s1
sp

. (36)

which provides a degree of singularity due to perturbations and hence a criteria for parameter
identifiability. If the columns of Â(µ) are nearly dependent then (36) is large.

Motivation of the second criteria is the uncertainty in the parameters of a particular subset
combination that can be quantified using the standard errors SE(µ). In order to compare the
degree of variation from one parameter to another, the coefficient of variation CV = SE(µ)/µ ∈
ℝp is used. The CV allows one to compare the parameters even if the parameter estimates are
substantially different in units and scales. Hence, a second criteria can be established by considering
the parameter selection score

À(µ) = ∣CV (µ)∣. (37)

In (37) a value near zero indicates lower uncertainty possibilities in the estimation while large values
suggest a possibility of a wide uncertainty in at least some of the estimates.

In general, the algorithm that searches all possible parameter combinations and selects the ones
satisfying criteria 1. and 2. is the following:
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1. Combinatorial search. For a fixed p, 1 ≤ p ≤ K (where K is total number of parame-
ters and initial conditions that are candidates for estimation-for our problem here K = 8),
calculate the set

Sp = {µ = (q1, ..., qp) ∈ ℝp∣qk ∈ QK , qk ∕= ql for all k, l = 1, ..., p}

where QK = {®, °, ¹1, ¹2, J0, C0,m, ¯} and the set Sp collects all the parameter vectors
obtained from the combinatorial search;

2. Full rank test. Calculate the set of feasible parameters Θp as
Θp = {µ∣µ ∈ Sp ⊂ ℝp, rank(Â(µ) = p)}. Calculate the condition number defined by

·(Â(µ)) =
s1
sp

;

3. Standard error test. For every µ ∈ Θp, calculate a vector of coefficients of variation
CV (µ) ∈ ℝp by

CVi =

√
(
∑

(µ)ii
µi

,

for i = 1, ..., p and
∑

(µ) = ¾2
0[Â(µ)

TÂ(µ)]−1 ∈ ℝp×p. Calculate the parameter selection score
as À(µ) = ∣CV (µ)∣.

5 Inverse Problem Results

5.1 Optimization algorithm testing with synthetic data

Before illustrating with the VRE surveillance data, we test and illustrate use of the optimization
algorithm to investigate the convergence of the parameters estimates µ̂ to the known values µ0. In
order to do this, we construct a synthetic dataset {yj} for j = 1, ..., n, by adding variability to the
corresponding model solution component f(tj , µ0) = J(tj , µ0) in (13). The statistical model that
captures the variability is taken as

yj = f(tj , µ0) + ¾zj (38)

where zj is a realization from a standard normal variable (i.e., Zj ∼ N (0, 1)) and ¾ is the constant
variability. The magnitude of ¾ determines how much noise is added. A low value indicates that
the data points tend to be very close to the same value (the mean), while high values indicates
that the data are “spread out” over a large range of values. Therefore, we can expect that 95% of
the time, numbers generated from this distribution will fall in the interval [−1.96¾, 1.96¾]. To this
end, we consider the standard error as one indication of the ability of the algorithm to estimate
the parameters using the synthetic data set.

The OLS and GLS optimization were solved with MATLAB routine lsqnonlin for n=500.
Parameter upper bounds are taken as

(®, °, ¹1, ¹2, J0, C0,m, ¯) = (0.5, 1, 1, 1, N,N, 1, 1)

and lower bounds are set to zero. Note that the upper bound for ® is 0.5 because the method
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for VRE detection is assumed to take at least 2 days. The model solutions f(tj , µ0) = J(tj , µ0)
are generated with initial conditions and parameter values µ0 for the oncology unit as described in
Table 3 (which are assumed to be the true values). By introducing variability levels such as ¾ = 0,
¾ = 0.01, ¾ = 0.05, and ¾ = 0.1 in the model solutions the reliability of the algorithm and hence
that of estimates are explored. Note that even though we are adding constant variability to the
synthetic data, the GLS optimization algorithm is tested with this data. This is because we wish
to investigate how the noise affects the standard deviation and not how meaningful they are.

In Tables 4, 5, and 6 we summarize the results for the inverse problems for µ = (J0, C0, ¯),
µ = (J0, C0,m, ¯), and µ = (®, J0, C0,m, ¯) using an OLS and a GLS optimization formulation.
Results indicates that both algorithms appear to be reliable for the estimation of the parameters
since the estimated values are close to their true values. Note that as ¾ increases the corresponding
standard errors increase. This indicates that the reliability of both algorithms in estimating the
parameters may depend on the observational error in the data. Similar results were obtained for
the other types of inverse problem formulations.

5.2 Subset selection results using the oncology unit surveillance data

To carry out the subset selection algorithm with the oncology unit surveillance data we assumed
nominal parameter values described in Table 3. Since we are interested in estimating the initial
conditions, transmission rate, and the fraction of patients that are already colonized on admission,
when p = 4 the only parameter combination considered is that of µ = (J0, C0,m, ¯). When
p = 1, 2, 3 the only parameters considered are µ = (¯), µ = (m,¯), and µ = (J0, C0, ¯).

In Table 7 we present the resulting selection score À(µ) and condition number k(Â(µ)) for each
subset of parameters when p = 1, ..., 8. Values that fall in the smallest selection score with the
relative small condition number are considered the most feasible subset of parameters. Results in-
dicate that the subsets of parameters µ = (J0, C0,m, ¯) have small condition numbers and relatively
small selection scores indicating that these subsets might provide low uncertainty in the parameter
estimates. In Table 8 we summarize the results of 4 inverse problems corresponding to the subsets
with the lowest selection scores and small condition numbers. These subsets of parameters are:

µ = (°, J0, C0,m, ¯)
µ = (J0, C0,m, ¯)
µ = (J0, C0, ¯)
µ = (m,¯).

We analyze the results using the coefficient of variation (CV) by considering the effect that
the inclusion or exclusion of parameters has on the vector µ = (J0, C0,m, ¯). In this subset, the
standard errors for J0 is about 0.4% of the estimate, for C0 it is about 0.8% of the estimate, for
m it is about 1.6% of the estimate, and for ¯ it is 0.3% of the estimate. When including ° (i.e.,
µ = (°, J0, C0,m, ¯)), the CV increases for almost all parameters. On the other hand, when m
is dropped or when the initial conditions are dropped, there is a reduction in the CV. Since this
reduction is not significant, we can conclude that the subset µ = (J0, C0,m, ¯) is a good choice to
be estimated from the oncology surveillance data since it provides estimates with low uncertainty.

Comparison of residual plots (for details on the use of residual plots in such problems, see [6])
for all subsets of parameters combinations suggested that the assumptions of the relative error
statistical model (22) corresponding to the GLS procedure are most suitable. In particular, the
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Table 4: OLS and GLS optimization algorithm testing for µ = (J0, C0, ¯) using synthetic data. The
model was fit to the synthetic data with levels of noise: ¾ = 0, 0.01, 0.05, and 0.1. Subscripts in µ¾
denote the level of noise in the synthetic data.

J0 C0 ¯

µ̂OLS
0 4.000e+00 4.000e+00 1.000e-03

SE(µ̂OLS
0 ) 2.301e-13 3.097e-13 1.691e-17

µ̂OLS
0.01 4.007e+00 3.998e+00 1.006e-03

SE(µ̂OLS
0.01 ) 2.162e-03 2.907e-03 1.584e-07

µ̂OLS
0.05 4.022e+00 3.995e+00 1.032e-03

SE(µ̂OLS
0.05 ) 1.077e-02 1.444e-02 7.793e-07

µ̂OLS
0.1 4.074e+00 3.954e+00 1.063e-03

SE(µ̂OLS
0.1 ) 2.222e-02 2.971e-02 1.585e-06

µ̂GLS
0 4.000e+00 4.000e+00 1.000e-03

SE(µ̂GLS
0 ) 3.956e-15 5.346e-15 4.358e-19

µ̂GLS
0.01 4.002e+00 4.000e+00 1.006e-03

SE(µ̂GLS
0.01 ) 4.150e-05 5.604e-05 4.553e-09

µ̂GLS
0.05 4.040e+00 3.973e+00 1.032e-03

SE(µ̂GLS
0.05 ) 2.112e-04 2.847e-04 2.290e-08

µ̂GLS
0.1 4.016e+00 4.015e+00 1.067e-03

SE(µ̂GLS
0.1 ) 4.119e-04 5.523e-04 4.343e-08
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Table 5: OLS and GLS optimization algorithm testing for µ = (J0, C0,m, ¯) using synthetic data.
The model was fit to the synthetic data with levels of noise: ¾ = 0, 0.01, 0.05, and 0.1. Subscripts
in µ¾ denote the level of noise in the synthetic data.

J0 C0 m ¯

True µ 4 4 0.04 0.001

Initial µ 3 5 0.05 0.002

µ̂OLS
0 4.000e+00 4.000e+00 4.000e-02 1.000e-03

SE(µ̂OLS
0 ) 8.620e-12 1.557e-11 1.611e-13 1.352e-14

µ̂OLS
0.01 4.004e+00 4.008e+00 4.013e-02 9.955e-04

SE(µ̂OLS
0.01 ) 2.372e-03 4.287e-03 4.457e-05 3.735e-06

µ̂OLS
0.05 4.029e+00 3.992e+00 4.032e-02 1.004e-03

SE(µ̂OLS
0.05 ) 1.102e-02 1.990e-02 2.091e-04 1.741e-05

µ̂OLS
0.1 4.074e+00 3.945e+00 3.987e-02 1.074e-03

SE(µ̂OLS
0.1 ) 2.271e-02 4.067e-02 4.273e-04 3.529e-05

µ̂GLS
0 4.000e+00 4.000e+00 4.000e-02 1.000e-03

SE(µ̂GLS
0 ) 1.496e-13 2.696e-13 3.145e-15 2.626e-16

µ̂GLS
0.01 4.003e+00 4.001e+00 4.003e-02 1.004e-03

SE(µ̂GLS
0.01 ) 4.636e-05 8.350e-05 9.762e-07 8.137e-08

µ̂GLS
0.05 4.009e+00 4.013e+00 4.022e-02 1.014e-03

SE(µ̂GLS
0.05 ) 2.343e-04 4.214e-04 4.971e-06 4.118e-07

µ̂GLS
0.1 4.050e+00 4.011e+00 4.046e-02 1.025e-03

SE(µ̂GLS
0.1 ) 4.434e-04 7.976e-04 9.545e-06 7.845e-07
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Table 6: OLS and GLS optimization algorithm testing for µ = (®, J0, C0,m, ¯) using synthetic data.
The model was fit to the synthetic data with levels of noise: ¾ = 0, 0.01, 0.05, and 0.1. Subscripts
in µ¾ denote the level of noise in the synthetic data.

® J0 C0 m ¯

µ̂OLS
0 2.890e-01 4.003e+00 4.136e+00 4.451e-02 1.856e-03

SE(µ̂OLS
0 ) 2.145e-04 5.126e-04 1.674e-03 2.009e-05 1.220e-06

µ̂OLS
0.01 2.895e-01 4.010e+00 4.120e+00 4.454e-02 1.872e-03

SE(µ̂OLS
0.01 ) 1.094e-03 2.620e-03 8.517e-03 1.025e-04 6.264e-06

µ̂OLS
0.05 2.811e-01 4.023e+00 4.269e+00 5.080e-02 1.670e-03

SE(µ̂OLS
0.05 ) 5.755e-03 1.337e-02 4.696e-02 6.381e-04 3.168e-05

µ̂OLS
0.1 2.899e-01 4.051e+00 4.109e+00 4.541e-02 1.880e-03

SE(µ̂OLS
0.1 ) 1.071e-02 2.572e-02 8.329e-02 1.033e-03 6.263e-05

µ̂GLS
0 2.901e-01 4.000e+00 4.095e+00 4.325e-02 1.538e-03

SE(µ̂GLS
0 ) 3.606e-06 8.920e-06 2.854e-05 3.686e-07 2.277e-08

µ̂GLS
0.01 2.894e-01 4.009e+00 4.130e+00 4.300e-02 1.869e-03

SE(µ̂GLS
0.01 ) 2.282e-05 5.581e-05 1.836e-04 2.373e-06 1.525e-07

µ̂GLS
0.05 2.787e-01 4.030e+00 4.348e+00 2.360e-02 1.860e-03

SE(µ̂GLS
0.05 ) 1.068e-04 2.581e-04 8.901e-04 5.955e-06 5.713e-07

µ̂GLS
0.1 2.900e-01 4.035e+00 4.189e+00 4.739e-02 1.882e-03

SE(µ̂GLS
0.1 ) 2.147e-04 5.191e-04 1.740e-03 2.506e-05 1.502e-06
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Table 7: Subset parameter selected as a result of the selection algorithm for p = 1, ..., 8 using the
oncology unit surveillance data with nominal parameter values described in Table 3 using the GLS
optimization.

Parameter vector q Selection score À(q) Condition number ·(Â(q))

(¯) 1.975e-05 1.000e+00

(m,¯) 2.358e-03 8.070e+02

(Jo,Co, ¯) 7.134e-03 8.236e+04

(Jo,Co,m, ¯) 1.815e-02 9.946e+04

(°, Jo, Co,m, ¯) 1.539e-01 2.253e+05

(®, Jo, Co,m, ¯) 1.597e-01 1.063e+06

(¹1, Jo, Co,m, ¯) 1.715e+01 1.308e+08

(¹2, Jo, Co,m, ¯) 6.123e+03 3.695e+05

(®, ¹1, Jo, Co,m, ¯) 6.225e+00 5.522e+06

(°, ¹1, Jo, Co,m, ¯) 1.741e+01 1.127e+08

(®, ¹2, Jo, Co,m, ¯) 6.315e+01 2.453e+05

(°, ¹2, Jo, Co,m, ¯) 8.472e+02 7.112e+05

(®, °, Jo, Co,m, ¯) 2.297e+03 2.852e+06

(¹1, ¹2, Jo, Co,m, ¯) 7.475e+04 2.091e+05

(®, °, ¹1, Jo, Co,m, ¯) 8.413e+02 2.074e+09

(®, ¹1, ¹2, Jo, Co,m, ¯) 1.929e+03 3.760e+05

(®, °, ¹2, Jo, Co,m, ¯) 3.447e+04 4.305e+06

(°, ¹1, ¹2, Jo, Co,m, ¯) 4.589e+04 4.311e+07

(®, °, ¹1, ¹2, Jo, Co,m, ¯) 1.469e+04 1.967e+09
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Table 8: Results of 4 inverse formulations solved with nominal values in Table 3 via GLS optimiza-
tion for the oncology unit surveillance data.

° J0 C0 m ¯

µ̂ 6.392e-01 4.004e+00 1.092e+00 5.277e-02 4.770e-03

SE(µ̂) 2.680e-02 1.811e-02 4.985e-02 6.007e-03 3.955e-04

CV (µ̂) 4.192e-02 4.524e-03 4.567e-02 1.139e-01 8.291e-02

µ̂ - 3.706e+00 1.966e+00 3.608e-02 4.865e-03

SE(µ̂) - 1.499e-02 1.560e-02 5.616e-04 1.675e-05

CV (µ̂) - 4.044e-03 7.934e-03 1.556e-02 3.443e-03

µ̂ - 3.706e+00 1.966e+00 - 4.865e-03

SE(µ̂) - 1.419e-02 1.184e-02 - 9.945e-08

CV (µ̂) - 3.829e-03 6.020e-03 - 2.044e-05

µ̂ - - - 4.070e-02 4.725e-03

SE(µ̂) - - - 9.290e-05 2.802e-06

CV (µ̂) - - - 2.282e-03 5.931e-04

residual analysis for estimating µ = (J0, C0,m, ¯) using OLS is presented in Figure 4. The OLS
residual plots (a) and (b) in Figure 4 reveal a fan shaped error structure which indicates the
nonconstant variance assumption is suspect. When GLS optimization is used instead, the residual
plots (c) and (d) in Figure 4 (note the difference in scales on the vertical axes) reveals a more
random error structure, suggesting that the GLS procedure was correctly used. Finally, a best fit
of the model solution to the oncology surveillance data is plotted in Figure 5. We note that this is
not a particularly encouraging fit of model to data, suggesting perhaps unaccounted for modeling
error which is addressed in [25] and a forthcoming manuscript.
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(d) GLS: Residuals/Model vs Model

Figure 4: Residual analysis for the OLS and GLS optimization for µ = (J0, C0,m, ¯) using the
oncology unit surveillance data. Note the difference in scales of axis in (a),(b) versus (c),(d).
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Figure 5: Best fit model solutions to oncology unit surveillance data via GLS optimization,
(Ĵ0, Ĉ0, ¹̂2, ˆ̄) = (4, 2, 0.04, 0.0049).

6 Concluding Remarks

Over the past decade efforts to connect models to data in the context of disease dynamics have
grown dramatically albeit most of the efforts have been carried out in the context of deterministic
epidemic models [13]. However, not only is it the case that the use of stochastic Markov Chain
models is often most appropriate, but also the use of stochastic processes in epidemiology has had
a long and distinguished history going back to 1766 [18].

The introduction of a methodology for parameter estimation within the context of a typical
MC stochastic model through the use of a limit theory due to Kurtz provides a simple rigorous
approximation approach for solution to an inverse problem of interest to epidemiologists. We have
illustrated this approach with an example of nosocomial infections in hospital occupancy units.
Since the number of beds in a typical hospital unit is small it is natural to consider an integer
valued stochastic model. Estimating epidemiological parameters in such a stochastic model can be
a difficult task, particularly when the data is quite limited. The alternative approach involving the
estimation of parameters from a corresponding deterministic approximation to the MC stochastic
model, based on large sample size averages over sample paths, provides a reasonable first step.
Once a deterministic approximation is obtained, one can readily apply standard as well as recently
developed parameter estimation methods for deterministic systems which provide not only the
parameter estimates but also corresponding measures of uncertainty for the estimates.
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